Анотація
У статті наведені результати аналізу основних проблем, що виникають при розпізнаванні типу дефекту в маслонаповненому обладнанні електричних мереж за результатами аналізу розчинених у маслі газів. На прикладі інтерпретації реальних результатів аналізу розчинених у маслі газів проаналізовано основні проблеми, що виникають під час розпізнавання часткових розрядів, іскрових розрядів, розрядів з низькою та високою щільністю енергії, локальних перегрівань та комбінованих дефектів із застосуванням графічного методу зі стандарту IEC 60599, квадрата ЕТRА та трикутника Дюваля. У процесі виконання аналізу виявлені наявні істотні розбіжності у нормах і критеріях, що регламентуються різними стандартами і методиками щодо інтерпретації результатів аналізу розчинених у маслі газів, для розпізнавання одного і того ж дефекту. За результатами досліджень встановлено, що практично для всіх аналізованих дефектів відмови від розпізнавання зумовлені відсутністю нормованих значень діагностичних критеріїв (значень відношень газів, відсоткового вмісту газів і відношень концентрацій газів до газу з максимальним вмістом) для деяких дефектів або комбінацій декількох дефектів. Постановка помилкових діагнозів під час розпізнавання типу дефектів маслонаповненого устаткування за результатами аналізу розчинених у маслі газів зумовлена не врахуванням значень окремих відношень газів або відсоткового вмісту окремих газів. У процесі аналізу виявлено суперечності в поставлених діагнозах, які виникають у разі використання різних діагностичних критеріїв (відношень характерних газів і відсоткового вмісту газів) стосовно одних і тих самих результатів аналізу розчинених у маслі газів. Забезпечення достовірного розпізнавання типу дефекту маслонаповненого устаткування за результатами аналізу розчинених у маслі газів можливе завдяки комплексному підходу, що включає не тільки аналіз значень відношень газів, а й аналіз відсоткового вмісту газів і номограм дефектів. Крім того принципово важливим є врахування фізико-хімічних закономірностей газоутворення в маслі, зокрема залежності газовмісту залежно від температури/енергії дефектів.
Посилання
D. R. Pugh, “Advances in fault diagnosis by combustible gas analysis,” in Minutes of Forty-First International Conference of Doble Clients. 1974, sec. 10–1201.
Mineral oil-filled electrical equipment in service – Guidance on the interpretation of dissolved and free gases analysis, IEC 60599:2012, 2012.
R. R. Rogers, “IEEE and IEC codes to interpret incipient faults in transformers, using gas in oil analysis,” IEEE Transactions on Electrical Insulation, vol. EI-13, no. 5, pp. 349–354, Oct. 1978, doi: https://doi.org/10.1109/TEI.1978.298141.
E. Dörnenburg and W. Strittmater, “Monitoring oil-cooled transformers by gas analysis,” Brown Boveri Review, vol. 61, pp. 238–274, 1974.
R. Müller, H. Schliesing, and K. Soldner, “Die Beurteilung des Betriebszustandes von Transformatoren durch Gasanalyse,” Elektrizitätswirtschaft, no. 76, pp. 345–349, 1977. (in German)
M. Duval, P. Gervais, G. Bélanger, “Update on Hydro-Québec's experience in the interpretation of dissolved gas analysis in HV transformers”, in CIGRE Symposium, Berlin, Germany. 1993, paper 110–14.
T. Kawamura, N. Kawada, K. Ando, M. Yamaoka, T. Maeda, and T. Takatsu, “Analyzing gases dissolved in oil and its application to maintenance of transformers,” in International Conference on Large High Voltage Electric Systems, Paris, Apr. 27–Sep. 4, 1986.
S.-w. Kim, S.-j. Kim, H.-d. Seo, J.-r. Jung, H.-j. Yang, and M. Duval, “New methods of DGA diagnosis using IEC TC 10 and related databases Part 1: Application of gas-ratio combinations,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 2, pp. 685–690, Apr. 2013, doi: https://doi.org/10.1109/tdei.2013.6508773.
S.-J. Kim, H.-D. Seo, and S.-W. Kim, “Internal defect diagnosis method of an oil immersed transformer through a dissolved gas composition ratio,” South Korean Patent 1020130074674, Jul. 4, 2013. (in Korean)
O. E. Gouda, S. H. El-Hoshy, and H. H. E.L.-Tamaly, “Proposed three ratios technique for the interpretation of mineral oil transformers based dissolved gas analysis,” IET Generation, Transmission & Distribution, vol. 12, no. 11, pp. 2650–2661, Jun. 2018, doi: https://doi.org/10.1049/iet-gtd.2017.1927.
“Guideline for the refurbishement of electric power transformers,” Electrical Cooperative Research Association, vol. 65, no. 1, 2009. (in Japanese)
M. Duval, “The duval triangle for load tap changers, non-mineral oils and low temperature faults in transformers,” IEEE Electrical Insulation Magazine, vol. 24, no. 6, pp. 22–29, Nov. 2008, doi: https://doi.org/10.1109/mei.2008.4665347.
E Bräsel., U. Sasum, “Universelles Fehlergasdreieck für die Transformatorendiagnostik”, ew, vol. 108, no. 17-18, pp. 70–75, 2009.
O. E. Gouda, S. H. El-Hoshy, and H. H. E.L.-Tamaly, “Condition assessment of power transformers based on dissolved gas analysis,” IET Generation, Transmission & Distribution, vol. 13, no. 12, pp. 2299–2310, Jun. 2019, doi: https://doi.org/10.1049/iet-gtd.2018.6168.
M. Duval and L. Lamarre, “The duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in transformers,” IEEE Electrical Insulation Magazine, vol. 30, no. 6, pp. 9–12, Nov. 2014, doi: https://doi.org/10.1109/mei.2014.6943428.
L. Cheim, M. Duval, and S. Haider, “Combined Duval Pentagons: A Simplified Approach,” Energies, vol. 13, no. 11, p. 2859, Jun. 2020, doi: https://doi.org/10.3390/en13112859.
D.-E. A. Mansour, “Development of a new graphical technique for dissolved gas analysis in power transformers based on the five combustible gases,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 5, pp. 2507–2512, Oct. 2015, doi: https://doi.org/10.1109/TDEI.2015.004999.
S.-j. Lee, Y.-m. Kim, H.-d. Seo, J.-r. Jung, H.-j. Yang, and M. Duval, “New methods of DGA diagnosis using IEC TC 10 and related databases Part 2: Application of relative content of fault gases,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 2, pp. 691–696, Apr. 2013, doi: https://doi.org/10.1109/tdei.2013.6508774.
M. M. Emara, G. D. Peppas, and I. F. Gonos, “Two graphical shapes based on DGA for power transformer fault types discrimination,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 28, no. 3, pp. 981–987, Jun. 2021, doi: https://doi.org/10.1109/tdei.2021.009415.
O. E. Gouda, S. H. El-Hoshy, and H. H. El-Tamaly, “Proposed heptagon graph for DGA interpretation of oil transformers,” IET Generation, Transmission & Distribution, vol. 12, no. 2, pp. 490–498, Jan. 2018, doi: https://doi.org/10.1049/iet-gtd.2017.0826.
О. S. Kulyk, “Analysis of the diagnostic criteria used to defect type recognition based on the results of analysis of gases dissolved in oil,” Bulletin of the National Technical University “KhPI”. Series: Energy: Reliability and Energy Efficiency, no. 1 (1), pp. 15–25, Dec. 2020, doi: https://doi.org/10.20998/2224-0349.2020.01.03.
O. Shutenko and O. Kulyk, “Comparative analysis of the defect type recognition reliability in high-voltage power transformers using different methods of DGA results interpretation,” in 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), Kremenchuk, Ukraine, Sep. 21–25, 2020, pp. 1–6, doi: https://doi.org/10.1109/paep49887.2020.9240911.
O. Shutenko and O. Kulyk, “Comparative analysis of new methods for defect type recognition by dissolved gas analysis,” in 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, Oct. 3–7, 2022. pp. 1–6. doi: https://doi.org/10.1109/khpiweek57572.2022.9916319.
X. Mi, G. Subramani, and M. Chan, “The application of RBF neural network optimized by k-means and genetic-backpropagation in fault diagnosis of power transformer,” E3S Web of Conferences, vol. 242, Art. no. 03002, 2021, doi: https://doi.org/10.1051/e3sconf/202124203002.
X. Yang, W. Chen, A. Li, and C. Yang, “A Hybrid machine‐learning method for oil‐immersed power transformer fault diagnosis,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 15, no. 4, pp. 501–507, Jan. 2020, doi: https://doi.org/10.1002/tee.23081.
B. Qi, Y. Wang, P. Zhang, C. Li, and H. Wang, “A novel deep recurrent belief network model for trend prediction of transformer DGA data,” IEEE Access, vol. 7, pp. 80069–80078, 2019, doi: https://doi.org/10.1109/access.2019.2923063.
Y. Kim, T. Park, S. Kim, N. Kwak, and D. Kweon, “Artificial intelligent fault diagnostic method for power transformers using a new classification system of faults,” Journal of Electrical Engineering & Technology, vol. 14, no. 2, pp. 825–831, Feb. 2019, doi: https://doi.org/10.1007/s42835-019-00105-0.
Y. D. Almoallem, I. B. M. Taha, M. I. Mosaad, L. Nahma, and A. Abu-Siada, “Application of logistic regression algorithm in the interpretation of dissolved gas analysis for power transformers,” Electronics, vol. 10, no. 10, p. 1206, May 2021, doi: https://doi.org/10.3390/electronics10101206.
Diahnostyka Maslonapovnenoho Transformatornoho Obladnannia Za Rezultatamy Khromatohrafichnoho Analizu Vilnykh Haziv, Vidibranykh Iz Hazovoho Rele, I Haziv, Rozchynenykh U Izoliatsiinomu Masli. Metodychni Vkazivky [Diagnosis of Oil-Filled Transformer Equipment by Chromatographic Analysis of Free Gases Sampled From the Gas Relay and Gases Dissolved in the Insulating Oil. Methodological Guidelines], SOU-N EE 46.501:2006, Naukovo-inzhenernyj centr “ZTZ-Servis” [Scientific and engineering centre “ZTZ-service”], Kyiv, 2007. (in Ukrainian)
“Conservation and Control of Oil-insulated Components by Diagnosis of Gas in Oil,” Electrical Cooperative Research Association, vol. 36, no. 1, 1980. (in Japanese)
M. G. Niasar, “Partial discharge signatures of defects in insulation systems consisting of oil and oil-impregnated paper,” Licentiate thesis, KTH School of Electrical Engineering, Stockholm, Sweden, 2012.
K. I. Lundgaard et al., “Partial discharges in transformer insulation,” CIGRE Task Force 15.04, 2000.
O. Shutenko and I. Yakovenko, “Analysis of gas content in high voltage equipment with partial discharges,” in 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), Kharkiv, Sep. 10–14, 2018, pp. 347–352, doi: https://doi.org/10.1109/ieps.2018.8559534.
O. Shutenko and O. Kulyk, “Diagnosis of oil-filled equipment with x-wax deposition based on dissolved gas analysis,” in 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, Aug. 26–28, 2021. pp. 1–6, doi: https://doi.org/10.1109/ukrcon53503.2021.9575623.
N. A. Muhamad and S. A. M. Ali, “LabVIEW with fuzzy logic controller simulation panel for condition monitoring of oil and dry type transformer,” World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 2, no. 8, pp. 1685–1691, 2008, doi: https://doi.org/10.5281/zenodo.1060253.
M. Duval and A. dePabla, “Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases,” IEEE Electrical Insulation Magazine, vol. 17, no. 2, pp. 31–41, Mar. 2001, doi: https://doi.org/10.1109/57.917529.
V. G. M. Cruz, A. L. H. Costa, and M. L. L. Paredes, “Simulation of thermal decomposition of mineral insulating oil,” Brazilian Journal of Chemical Engineering, vol. 32, no. 3, pp. 781–794, Sep. 2015, doi: https://doi.org/10.1590/0104-6632.20150323s00003531.
M. M. Islam, G. Lee, and S. N. Hettiwatte, “Application of Parzen Window estimation for incipient fault diagnosis in power transformers,” High Voltage, vol. 3, no. 4, pp. 303–309, Dec. 2018, doi: https://doi.org/10.1049/hve.2018.5061.
B. Zeng, J. Guo, W. Zhu, Z. Xiao, F. Yuan, and S. Huang, “A transformer fault diagnosis model based on hybrid grey wolf optimizer and LS-SVM,” Energies, vol. 12, no. 21, Nov. 2019, Art. no. 4170, doi: https://doi.org/10.3390/en12214170.
B. Nemeth, S. Laboncz, and I. Kiss, “Condition monitoring of power transformers using DGA and Fuzzy logic,” in 2009 IEEE Electrical Insulation Conference (EIC) (Formerly EIC/EME), Montreal, QC, Canada, May 31–Jun. 3, 2009. pp. 373–376, doi: https://doi.org/10.1109/eic.2009.5166373.
D. Bhalla, R. K. Bansal, and H. O. Gupta, “Integrating AI based DGA fault diagnosis using Dempster–Shafer Theory,” International Journal of Electrical Power & Energy Systems, vol. 48, pp. 31–38, Jun. 2013, doi: https://doi.org/10.1016/j.ijepes.2012.11.018.
I. B. M. Taha, A. Hoballah, and S. S. M. Ghoneim, "Optimal ratio limits of rogers' four-ratios and IEC 60599 code methods using particle swarm optimization fuzzy-logic approach," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 27, no. 1, pp. 222–230, Feb. 2020, doi: https://doi.org/10.1109/tdei.2019.008395.
S. B. Wanjare, P. S. Swami, and A. G. Thosar, “DGA interpretation for increasing the percent of accuracy by bayesian network method comparing IEC TC 10 database,” International Journal of Engineering Trends and Technology, vol. 62, no. 1, pp. 46–51, Aug. 2018, doi: https://doi.org/10.14445/22315381/ijett-v62p208.
E. Li, L. Wang, B. Song, and S. Jian, “Improved fuzzy c-means clustering for transformer fault diagnosis using dissolved gas analysis data,” Energies, vol. 11, no. 9, Sep. 2018, Art. no. 2344, doi: https://doi.org/10.3390/en11092344.
O. S. Kulyk and O. V. Shutenko, “Analysis of gas content in oil-filled equipment with spark discharges and discharges with high energy density,” Transactions on Electrical and Electronic Materials, vol. 20, no. 5, pp. 437–447, Jul. 2019, doi: https://doi.org/10.1007/s42341-019-00124-8.
O. Shutenko and O. Kulyk, “Analysis of gas content in oil-filled equipment with low energy density discharges,” International Journal on Electrical Engineering and Informatics, vol. 12, no. 2, pp. 258–277, Jun. 2020, doi: https://doi.org/10.15676/ijeei.2020.12.2.6.
S. Y. Jasim and J. Shrivastava, “Dissolved gas analysis of power transformers,” International Journal of Electrical and Electronics Engineering Research (IJEEER), vol. 3, no. 5, pp. 1–10, 2013.
O. Shutenko, “Analysis of gas composition in oil-filled faulty equipment with acetylene as the key gas,” Energetika, vol. 65, no. 1, pp. 21–38, May 2019, doi: https://doi.org/10.6001/energetika.v65i1.3973.
O. V. Shutenko, “Analysis of the content of gases in oil-filled equipmentwith electrical defects,” Problemele Energeticii Regionale, no. 3(38), pp. 1–16, 2018, doi: https://doi.org/10.5281/zenodo.2222331. (in Russian)
L. Bouchaoui, “Diagnostic des transformateurs de puissance par la méthode d'analyse des gas dissous : Application des réseaux de neurones,” Magister En Electrotechnique, Université Ferhat Abbas de Sétif (UFAS), Sétif, Algeria, 2010. (in French)
M. S. Zainal Abidin, A. R. Husain, K. Marzuki et. al., Design of a Fault Diagnostic Engine for Power Transformer Using Data Mining. Skudai, Johor, Malaysia: Universiti Teknologi Malaysia. [Online]. Available: http://eprints.utm.my/id/eprint/5839/1/74286.pdf.
H. A. Illias and W. Zhao Liang, “Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation,” PLOS ONe, vol. 13, no. 1, Jan. 2018, Art. no. e0191366, doi: https://doi.org/10.1371/journal.pone.0191366.
S. Köroğlu and D. Akif, “Güç transformatörü arızalarının destek vektör makineleriyle belirlenmesi,” in Otomatik kontrol türk milli komitesi ulusal toplantısı TOK'2015, Denizli, Türkiye, Sep. 10–12, 2015. (in Turkish)
R. Soni and K. Chaudhari, “An approach to diagnose incipient faults of power transformer using dissolved gas analysis of mineral oil by ratio methods using fuzzy logic,” in 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, Odisha, India, Oct. 3–5, 2016. pp. 1894–1899, doi: https://doi.org/10.1109/scopes.2016.7955775.
O. Shutenko and O. Kulyk, “Recognition of overheating with temperatures of 150-300°C by analysis of dissolved gases in oil,” in 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS), Istanbul, Turkey, Sep. 7–11, 2020, pp. 71–76, doi: https://doi.org/10.1109/ieps51250.2020.9263145.
O. Shutenko and O. Kulyk, “Recognition of low-temperature overheating in power transformers by dissolved gas analysis,” Electrical Engineering, vol. 104, no. 4, pp. 2109–2121, Jan. 2022, doi: https://doi.org/10.1007/s00202-021-01465-5.
O. Shutenko and O. Kulyk, “Recognition of mid-temperature overheating in high-voltage power transformers by dissolved gas analysis,” in 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, Sep. 13–17, 2021, pp. 401–406, doi: https://doi.org/10.1109/khpiweek53812.2021.9570059.
O. Shutenko and O. Kulyk, “Recognition of high-temperature overheating in high-voltage power transformers by dissolved gas analysis,” in 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, Sep. 21–24, 2021, pp. 1–6, doi: https://doi.org/10.1109/mees52427.2021.9598575.
O. Shutenko and O. Kulyk, “Analysis of gas content in oil-filled equipment with defects for which ethane is the key gas,” Lighting Engineering and Power Engineering, vol. 2, no. 58, pp. 33–42, Sep. 2020, doi: https://doi.org/10.33042/2079-424x-2020-2-58-33-42.
О. S. Kulyk, “Recognition of overheating in different temperature ranges in high-voltage oil-filled equipment by the dissolved gas analysis,” Bulletin of the National Technical University “KhPI”. Series: Energy: Reliability and Energy Efficiency, no. 2 (3), pp. 102–113, Dec. 2021, doi: https://doi.org/10.20998/2224-0349.2021.02.03.
K. Shrivastava and A. Choubey, ‘A Novel Association Rule Mining with IEC Ratio Based Dissolved Gas Analysis for Fault Diagnosis of Power Transformers”", International Journal of Advanced Computer Research, vol. 2, no. 4, pp. 34-44, 2012.
N. Van Le, “Application of artificial intelligence in diagnosis of power transformer incipient faults,” in 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Regina, SK, Canada, May 5–8, 2013. pp. 1–4, doi: https://doi.org/10.1109/ccece.2013.6567700.
R. S. Zade and S. Kudkelwar, “Analysis of DGA methods for the incipient fault diagnosis in power transformer using ANN,” International Journal of Science and Research (IJSR), vol. 7, no. 6, pp. 1818–1822, Jul. 2018.
O. Shutenko and O. Kulyk, “Combined defects recognition in the low and medium temperature range by results of dissolved gas analysis,” in 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, Oct. 5–10, 2020, pp. 65–70, doi: https://doi.org/10.1109/khpiweek51551.2020.9250131.
O. Shutenko and O. Kulyk, “Recognition of combined defects with high-temperature overheating based on the dissolved gas analysis,” Sādhanā, vol. 47, no. 3, p. 146, Jul. 2022, doi: https://doi.org/10.1007/s12046-022-01919-x.
O. Shutenko and O. Kulyk, “Recognition of discharges that are accompanied by low-temperature overheating based on the analysis of gases dissolved in the oil of high-voltage transformers,” Energy Saving. Power Engineering. Energy Audit, no. 3–4 (157–158), pp. 20–33, Sep. 2021, doi: https://doi.org/10.20998/2313-8890.2021.03.02.
O. Shutenko and O. Kulyk, “Diagnostics of oil-filled equipment with combined defects based on analysis of dissolved gases in oil,” Bulletin of the Kharkiv National Technical University of Agriculture Named After P. Vasylenko, no. 203, pp. 39–42, 2019. (in Ukrainian)
O. Shutenko and O. Kulyk, “Recognition of overheating accompanied by high energy density discharges based on analysis of gases dissolved in oil,” Energy. Series: “Modern Problems of Power Engineering and Ways of Solving Them”, no. 4(96), pp. 82–87, 2020. (in Russian)
О. Kulyk, “Recognition of overheating in different temperature ranges, which is accompanied by discharges of different intensity, based on the dissolved gas analysis,” Bulletin of the National Technical University “KhPI”. Series: Energy: Reliability and Energy Efficiency, no. 1 (4), pp. 44–45, Jul. 2022, doi: https://doi.org/10.20998/2224-0349.2022.01.07.
О. Shutenko, “Features of recognising the type of defect in oil-filled equipment using the nomogram method,” Bulletin of the National Technical University “KhPI”. Series: Energy: Reliability and Energy Efficiency, no. 1 (4), pp. 86–106, Jul. 2022, doi: https://doi.org/10.20998/2224-0349.2022.01.10.
O. Shutenko and I. Yakovenko, “Fault diagnosis of power transformer using method of graphic images,” in 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering, Lviv, Ukraine, 17–20 October 2017, pp. 66–69, doi: https://doi.org/10.1109/YSF.2017.8126594.
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Авторське право (c) 2023 Олег Володимирович Шутенко